關於S3C2440的啟動方式有兩種:Nor Flash 啟動和Nand Flash 啟動。
Nor Flash 和Nand Flash 都是非易失性記憶體,Nor Flash 的特點是晶片內執行和不能直接寫操作,程式可以直接在其中運行,而不必將程式讀取到RAM 中運行。Nor Flash 雖然具有這個優點,但是它的性價比遠低於Nand Flash,因而很多系統採用Nand Flash 啟動。Nand Flash 的特點是採用非線性存儲模式,程式無法在其中運行,它只能作為程式或資料的存儲載體,存儲在其中的程式只能先拷貝到RAM 中才能運行。
從Nor Flash 啟動時,與nGCS0 相連的Nor Flash 就被映射到nGCS0 片選的空間,其位址被映射為0x00000000;從Nand Flash 啟動時,S3C2440 晶片內部自帶的一塊容量為4K 的被稱為“Steppingstone”的BootSRAM 被映射到nGCS0 片選的空間,其位址被映射為0x00000000。當系統上電或重定時,程式會從0 位址處開始執行,因此我們編寫的啟動代碼要確保存儲在0 位址處。
當啟動方式為Nor Flash 啟動時,沒有額外需要考慮的問題,因為這種情況下程式在系統啟動前就存儲在Nor Flash 中,我們只要保證將啟動代碼保存在Nor Flash 開始的位置即可,系統上電或重定時,0 位址處的啟動代碼就會被執行。
系統上電之後,需要一段程式來進行初始化。比如:關閉WATCHDOG、改變系統時鐘(system clock controller)、初始化記憶體控制器(memory controller)、將更多的代碼複製到記憶體中(SDRAM)等。如果它能將作業系統內核覆制到記憶體中運行,無論從本地(比如Flash)還是從遠端(比如通過網路),就稱這段程式為Bootloader。簡單地說,Bootloader就是那麼一小段程式,它在系統上電時開始執行,,初始化硬體設備、準備好軟體環境,最後調用作業系統內核。
啟動過程: 系統上電  --> Bootloader --> Kernel --> Filesystem --> Application
Bootloader 可視作裸機程式集合,在系統上電時,需做硬體初始化,使得作業系統能夠在系統上運行,其主要重點如下
- 對硬體的操作
- 對ARM處理器的瞭解
- 程式的基本概念:重定位、棧、程式碼片段、資料段、BSS段
自己寫 Bootloader 程式流程:
- close watchdog
- set system clock
- initail sdram
- relocate location, 把bootloader本身的代碼從flash複製到它的連結位址去
- run main
- 從NAND FLASH 把內核讀入內存
- 設置參數(放置Kernel所需要的參數)
- 跳轉執行
====================================
start.c
#define S3C2440_MPLL_200MHZ     ((0x5c<<12)|(0x01<<4)|(0x02))
#define S3C2440_MPLL_400MHZ     ((0x5c<<12)|(0x01<<4)|(0x01))
#define MEM_CTL_BASE    0x48000000
.text
.global _start
_start:
//1 ● close watchdog
 ldr r0, =0x5300000
 mov r1, #0
 str r1, [r0]
//2 ● set system clock
 ldr r0, =0x4c000014
// mov r1, #0x03   // FCLK:HCLK:PCLK=1:2:4, HDIVN=1,PDIVN=1
 mov r1, #0x05     // FCLK:HCLK:PCLK=1:4:8, HDIVN=2,PDIVN=1
 str r1, [r0]
 // s3c2440 規定
 // 如果HDIVN非0,CPU的匯流排模式應該從“fast bus mode”變為“asynchronous
bus mode”
 mrc p15, 0, r1, c1, c0, 0  /* 讀出控制暫存器 */ 
 orr r1, r1, #0xc0000000  /* 設置為“asynchronous bus mode” */
 mcr p15, 0, r1, c1, c0, 0  /* 寫入控制暫存器*/
 // MPLLCON = S3C2440_MPLL_200MHZ
 ldr r0, =0x4c000004
 // ldr r1, = S3C2440_MPLL_200MHZ
 ldr r1, = S3C2440_MPLL_400MHZ
 str r1, [r0]
 // 啟動ICACHE
 mrc p15, 0, r0, c1, c0, 0   @ read control reg
 orr r0, r0, #(1<<12)
 mcr p15, 0, r0, c1, c0, 0   @ write it back
//3 ● initail sdram
 ldr r0, =MEM_CTL_BASE
 adr r1, sdram_config
 add r3, r0, #(13*4)
1:
 ldr r2, [r1], #4
 str r2, [r0], #4
 cmp r0, r3
 bne 1b                      @f:往前跳
//4 ● relocate location, 把bootloader本身的代碼從flash複製到它的連結位址去
 ldr sp, =0x34000000
 bl copy_code_to_sdram
 mov r0, #0
 ldr r1, =_start
 ldr r2, =__bss_start
 sub r2, r2, r1
 bl copy_code_to_sdram
 bl clear_bss
//5 ● run main
 ldr lr, =halt
 ldr pc, =main
halt:
 b halt
sdram_config:
 .long 0x22011110  //BWSCON
 .long 0x00000700  //BANKCON0
 .long 0x00000700  //BANKCON1
 .long 0x00000700  //BANKCON2
 .long 0x00000700  //BANKCON3  
 .long 0x00000700  //BANKCON4
 .long 0x00000700  //BANKCON5
 .long 0x00018005  //BANKCON6
 .long 0x00018005  //BANKCON7
 .long 0x008C04F4  //REFRESH
 .long 0x000000B1  //BANKSIZE
 .long 0x00000030  //MRSRB6
 .long 0x00000030  //MRSRB7
====================================
boot.c
#include "setup.h"
void setup_start_tag(void);
void setup_memory_tags(void);
void setup_commandline_tag(char *cmdline);
void setup_end_tag(void);
extern void uart0_init(void);
extern void nand_read(unsigned int addr, unsigned char *buf, unsigned int len);
extern void puts(char *str);
extern void puthex(unsigned int val);
int main(void)
{
 void (*theKernel)(int zero, int arch, unsigned int params);
 volatile unsigned int *p = (volatile unsigned int *)0x30008000;
 // 0. 幫內核設置串口: 內核啟動的開始部分會從串口列印一些資訊,
 //    但是內核一開始沒有初始化串口
 //    若不初始化串口,程式會變成死循環
 uart0_init();
 // 1. 從NAND FLASH 把內核讀入內存
 puts("Copy kernel from nand\n\r");
 nand_read(0x60000 + 64, (unsigned char *)0x30008000, 0x200000);
 puthex(0x12345ABCD);
 puts("\n\r");
 puthex(*p);
 puts("\n\r");
 // 2.設置參數
 puts("Set boot params\n\r");
 setup_start_tag();
 setup_memory_tags();
 setup_commandline_tag("noinitrd root=/dev/mtdblock3 init=/linuxrc console=ttySAC0");
 setup_end_tag();
 // 3. 跳轉執行
 puts("Boot kernel\n\r");
 theKernel = (void (*)(int, int, unsigned int))0x30008000;
 theKernel(0, 362, 0x30000100);
 /*
  * mov r0, #0
  * ldr r1, =362
  * ldr r2, =0x30000100
  * mov pc, #0x30008000
  */
 // 如果一切正常, 不會執行到這裡
 puts("Error!\n\r");
 return -1;
}
static struct tag *params; // 設置kernel所需參數
void setup_start_tag(void)
{
 params = (struct tag*)0x30000100;
 params -> hdr.tag = ATAG_CORE;
 params -> hdr.size = tag_size(tag_core);
 params -> u.core.flags = 0;
 params -> u.core.pagesize = 0;
 params -> u.core.rootdev = 0;
 params = tag_next (params);
}
void setup_memory_tags(void)
{
 params->hdr.tag = ATAG_MEM;
 params->hdr.size = tag_size (tag_mem32);
 params->u.mem.start = 0x30000000;    // bd->bi_dram[i].start;
 params->u.mem.size = 64*1024*1024;   // (64*1024*1024 = 0x4000000) 
// bd->bi_dram[i].size;
// bd->bi_dram[i].size;
 params = tag_next (params); 
}
int strlen(char *str)
{
 int i = 0;
 while(str[i])
 {
  i++;
 }
 return i;
}
void strcpy(char *dest, char *src)
{
 while((*dest++ = *src++) != '\0');
}
void setup_commandline_tag(char *cmdline)
{
 int len = strlen(cmdline) + 1;
 params->hdr.tag = ATAG_CMDLINE;
 params->hdr.size = (sizeof (struct tag_header) + len + 3) >> 2;
 strcpy (params->u.cmdline.cmdline, cmdline);
 params = tag_next (params);
}
void setup_end_tag(void)
{
 params->hdr.tag = ATAG_NONE;
 params->hdr.size = 0;
}
====================================
init.c
// NAND FLASH Controller
#define NFCONF (*(volatile unsigned long *)0x4E000000)
#define NFCONT (*(volatile unsigned long *)0x4E000004)
#define NFCMMD (*(volatile unsigned long *)0x4E000008)
#define NFADDR (*(volatile unsigned long *)0x4E00000C)
#define NFDATA (*(volatile unsigned long *)0x4E000010)
#define NFSTAT (*(volatile unsigned long *)0x4E000020)
// GPIO
#define GPHCON              (*(volatile unsigned long *)0x56000070)
#define GPHUP               (*(volatile unsigned long *)0x56000078)
// UART registers
#define ULCON0              (*(volatile unsigned long *)0x50000000)
#define UCON0               (*(volatile unsigned long *)0x50000004)
#define UFCON0              (*(volatile unsigned long *)0x50000008)
#define UMCON0              (*(volatile unsigned long *)0x5000000c)
#define UTRSTAT0            (*(volatile unsigned long *)0x50000010)
#define UTXH0               (*(volatile unsigned char *)0x50000020)
#define URXH0               (*(volatile unsigned char *)0x50000024)
#define UBRDIV0             (*(volatile unsigned long *)0x50000028)
#define TXD0READY   (1<<2)
void nand_read(unsigned int addr, unsigned char *buf, unsigned int len);
void nand_select(void);
void nand_deselect(void);
void nand_cmd(unsigned char cmd);
void nand_addr(unsigned int addr);
void nand_wait_ready(void);
unsigned char nand_data(void);
void nand_select(void);
void nand_deselect(void);
void nand_cmd(unsigned char cmd);
void nand_addr(unsigned int addr);
void nand_wait_ready(void);
unsigned char nand_data(void);
int isBootFromNorFlash(void)
{
 volatile int *p = (volatile *)0;
 int val;
 val = *p;
 *p = 0x12345678;
 if(*p == 0x12345678)
 {
  // 寫成功,nand啟動
  *p = val;
  return 0; 
 }
 else
 {
  // NOR不能像內存一樣寫
  return 1;
 }
}
void copy_code_to_sdram(unsigned char *src, unsigned char *dest, unsigned int len)
{
 // NOR Start
 if(isBootFromNorFlash())
 {
  while(i < len)
  {
   dest[i] = src[i];
   i++;
  }
 }
 else
 {
  // nand_init(); 放到start.s, 因為不管是nor啟動或是nand啟動,同樣需要將
  // 內核從nand複製到sdram
  nand_read(src, dest, len);
 }
}
void clear_bss()
{
 extern  int __bss_state, __bss_end;
 int *p = &__bss_state;
 for(;p < &__bss_end; p++)
 {
  *p = 0;
 }
}
void nand_init(void)
{
#define TACLS 0
#define TWRPH0 1
#define TWRPH1 0
 // 設置時序
 NFCONF = (TACLS << 12) | (TWRPH0 << 8) | (TWRPH1 << 4);
 // 始能NAND FLASH Controller, 初始化ECC, 禁止片選
 NFCONT = (1 << 4) | (1 << 1) | (1 << 0);
}
void nand_read(unsigned int addr, unsigned char *buffer, unsigned int len)
{
 int col = addr % 2048;  // 可能從中間page開始讀
 int i = 0;
 // 1. 選中
 nand_select();
 while(i < len)
 {
  // 2. 發出read命令 (00h)
  nand_cmd(0x00);
  // 3. 發出地址(分五次發出)
  nand_addr(addr);
  // 4. 發出read命命 (0x3h)
  nand_cmd(0x03);
  // 5. 判斷狀態
  nand_wait_ready();
  // 6. read 數據
  for(; (col < 2048) && (i < len); col++)
  {
   buf[i] = nand_data();
   i++;
   addr++;
  }
  col = 0; // 讀完一頁, col 歸零
 }
 // 7. 取消選中
 nand_deselect();
}
void nand_select(void)
{
 NFCONT &= ~(1<<1);
}
void nand_deselect(void)
{
 NFCONT |= (1<<1);
}
void nand_cmd(unsigned char cmd)
{
 volatile int i;
 NFCMMD = cmd;
 for (i = 0; i < 10; i++);
}
void nand_addr(unsigned int addr)
{
 unsigned int col = addr % 2048;
 unsigned int page = addr / 2048;
 unsigned int i;
 NFADDR = col & 0xff;
 for (i = 0; i < 10; i++);
 NFADDR = (col >> 8)  && 0xff;
 for (i = 0; i < 10; i++);
 NFADDR = page & 0xff;
 for (i = 0; i < 10; i++);
 NFADDR = (page >> 8) & 0xff;
 for (i = 0; i < 10; i++);
 NFADDR = (page >> 16) & 0xff;
 for (i = 0; i < 10; i++);
}
void nand_wait_ready(void)
{
 while(!(NFSTAT & 1));
}
unsigned char nand_data(void)
{
 return NFDATA;
}
#define PCLK            50000000    // init.c中的clock_init函數設置PCLK為50MHz
#define UART_CLK        PCLK        //  UART0的時鐘源設為PCLK
#define UART_BAUD_RATE  115200      // 串列傳輸速率
#define UART_BRD        ((UART_CLK  / (UART_BAUD_RATE * 16)) - 1)
/*
 * 初始化UART0
 * 115200,8N1,無流控
 */
void uart0_init(void)
{
    GPHCON  |= 0xa0;    // GPH2,GPH3用作TXD0,RXD0
    GPHUP   = 0x0c;     // GPH2,GPH3內部上拉
    ULCON0  = 0x03;     // 8N1(8個資料位元,無較驗,1個停止位)
    UCON0   = 0x05;     // 查詢方式,UART時鐘源為PCLK
    UFCON0  = 0x00;     // 不使用FIFO
    UMCON0  = 0x00;     // 不使用流控
    UBRDIV0 = UART_BRD; // 串列傳輸速率為115200
}
// 發送一個字元
void putc(unsigned char c)
{
    // 等待,直到發送緩衝區中的資料已經全部發送出去
    while (!(UTRSTAT0 & TXD0READY));
    // 向UTXH0寄存器中寫入資料,UART即自動將它發送出去
    UTXH0 = c;
}
// 打印除錯訊息
void puts(char *str)
{
 int i = 0;
 while(str[i])
 {
  putc(str[i]);
  i++;
 }
}
void puthex(unsigned int val)
{
 // 0x1234abcd
 int i,j;
 puts("0x");
 for(i=0; i<8; i++)
 {
  j = (val >> ((7-i)*4)) & 0xf;
  if((j >= 0) && (j <= 9))
   putc('0' + j);
  else
   putc('A' + j - 0xa);
 }
}
====================================
/*
 *  linux/include/asm/setup.h
 *
 *  Copyright (C) 1997-1999 Russell King
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License version 2 as
 * published by the Free Software Foundation.
 *
 *  Structure passed to kernel to tell it about the
 *  hardware it's running on.  See linux/Documentation/arm/Setup
 *  for more info.
 *
 * NOTE:
 *  This file contains two ways to pass information from the boot
 *  loader to the kernel. The old struct param_struct is deprecated,
 *  but it will be kept in the kernel for 5 years from now
 *  (2001). This will allow boot loaders to convert to the new struct
 *  tag way.
 */
#ifndef __ASMARM_SETUP_H
#define __ASMARM_SETUP_H
#define u8  unsigned char
#define u16 unsigned short
#define u32 unsigned long
/*
 * Usage:
 *  - do not go blindly adding fields, add them at the end
 *  - when adding fields, don't rely on the address until
 *    a patch from me has been released
 *  - unused fields should be zero (for future expansion)
 *  - this structure is relatively short-lived - only
 *    guaranteed to contain useful data in setup_arch()
 */
#define COMMAND_LINE_SIZE 1024
/* This is the old deprecated way to pass parameters to the kernel */
struct param_struct {
    union {
 struct {
     unsigned long page_size;  /*  0 */
     unsigned long nr_pages;  /*  4 */
     unsigned long ramdisk_size;  /*  8 */
     unsigned long flags;  /* 12 */
#define FLAG_READONLY 1
#define FLAG_RDLOAD 4
#define FLAG_RDPROMPT 8
     unsigned long rootdev;  /* 16 */
     unsigned long video_num_cols; /* 20 */
     unsigned long video_num_rows; /* 24 */
     unsigned long video_x;  /* 28 */
     unsigned long video_y;  /* 32 */
     unsigned long memc_control_reg; /* 36 */
     unsigned char sounddefault;  /* 40 */
     unsigned char adfsdrives;  /* 41 */
     unsigned char bytes_per_char_h; /* 42 */
     unsigned char bytes_per_char_v; /* 43 */
     unsigned long pages_in_bank[4]; /* 44 */
     unsigned long pages_in_vram; /* 60 */
     unsigned long initrd_start;  /* 64 */
     unsigned long initrd_size;  /* 68 */
     unsigned long rd_start;  /* 72 */
     unsigned long system_rev;  /* 76 */
     unsigned long system_serial_low; /* 80 */
     unsigned long system_serial_high; /* 84 */
     unsigned long mem_fclk_21285;       /* 88 */
 } s;
 char unused[256];
    } u1;
    union {
 char paths[8][128];
 struct {
     unsigned long magic;
     char n[1024 - sizeof(unsigned long)];
 } s;
    } u2;
    char commandline[COMMAND_LINE_SIZE];
};
/*
 * The new way of passing information: a list of tagged entries
 */
/* The list ends with an ATAG_NONE node. */
#define ATAG_NONE 0x00000000
struct tag_header {
 u32 size;
 u32 tag;
};
/* The list must start with an ATAG_CORE node */
#define ATAG_CORE 0x54410001
struct tag_core {
 u32 flags;  /* bit 0 = read-only */
 u32 pagesize;
 u32 rootdev;
};
/* it is allowed to have multiple ATAG_MEM nodes */
#define ATAG_MEM 0x54410002
struct tag_mem32 {
 u32 size;
 u32 start; /* physical start address */
};
/* VGA text type displays */
#define ATAG_VIDEOTEXT 0x54410003
struct tag_videotext {
 u8  x;
 u8  y;
 u16  video_page;
 u8  video_mode;
 u8  video_cols;
 u16  video_ega_bx;
 u8  video_lines;
 u8  video_isvga;
 u16  video_points;
};
/* describes how the ramdisk will be used in kernel */
#define ATAG_RAMDISK 0x54410004
struct tag_ramdisk {
 u32 flags; /* bit 0 = load, bit 1 = prompt */
 u32 size; /* decompressed ramdisk size in _kilo_ bytes */
 u32 start; /* starting block of floppy-based RAM disk image */
};
/* describes where the compressed ramdisk image lives (virtual address) */
/*
 * this one accidentally used virtual addresses - as such,
 * its depreciated.
 */
#define ATAG_INITRD 0x54410005
/* describes where the compressed ramdisk image lives (physical address) */
#define ATAG_INITRD2 0x54420005
struct tag_initrd {
 u32 start; /* physical start address */
 u32 size; /* size of compressed ramdisk image in bytes */
};
/* board serial number. "64 bits should be enough for everybody" */
#define ATAG_SERIAL 0x54410006
struct tag_serialnr {
 u32 low;
 u32 high;
};
/* board revision */
#define ATAG_REVISION 0x54410007
struct tag_revision {
 u32 rev;
};
/* initial values for vesafb-type framebuffers. see struct screen_info
 * in include/linux/tty.h
 */
#define ATAG_VIDEOLFB 0x54410008
struct tag_videolfb {
 u16  lfb_width;
 u16  lfb_height;
 u16  lfb_depth;
 u16  lfb_linelength;
 u32  lfb_base;
 u32  lfb_size;
 u8  red_size;
 u8  red_pos;
 u8  green_size;
 u8  green_pos;
 u8  blue_size;
 u8  blue_pos;
 u8  rsvd_size;
 u8  rsvd_pos;
};
/* command line: \0 terminated string */
#define ATAG_CMDLINE 0x54410009
struct tag_cmdline {
 char cmdline[1]; /* this is the minimum size */
};
/* acorn RiscPC specific information */
#define ATAG_ACORN 0x41000101
struct tag_acorn {
 u32 memc_control_reg;
 u32 vram_pages;
 u8 sounddefault;
 u8 adfsdrives;
};
/* footbridge memory clock, see arch/arm/mach-footbridge/arch.c */
#define ATAG_MEMCLK 0x41000402
struct tag_memclk {
 u32 fmemclk;
};
struct tag {
 struct tag_header hdr;
 union {
  struct tag_core  core;
  struct tag_mem32 mem;
  struct tag_videotext videotext;
  struct tag_ramdisk ramdisk;
  struct tag_initrd initrd;
  struct tag_serialnr serialnr;
  struct tag_revision revision;
  struct tag_videolfb videolfb;
  struct tag_cmdline cmdline;
  /*
   * Acorn specific
   */
  struct tag_acorn acorn;
  /*
   * DC21285 specific
   */
  struct tag_memclk memclk;
 } u;
};
struct tagtable {
 u32 tag;
 int (*parse)(const struct tag *);
};
#define tag_member_present(tag,member)    \
 ((unsigned long)(&((struct tag *)0L)->member + 1) \
  <= (tag)->hdr.size * 4)
#define tag_next(t) ((struct tag *)((u32 *)(t) + (t)->hdr.size))
#define tag_size(type) ((sizeof(struct tag_header) + sizeof(struct type)) >> 2)
#define for_each_tag(t,base)  \
 for (t = base; t->hdr.size; t = tag_next(t))
/*
 * Memory map description
 */
#define NR_BANKS 8
struct meminfo {
 int nr_banks;
 unsigned long end;
 struct {
  unsigned long start;
  unsigned long size;
  int           node;
 } bank[NR_BANKS];
};
extern struct meminfo meminfo;
#endif
====================================
Makefile
CC      = arm-linux-gcc
LD      = arm-linux-ld
AR      = arm-linux-ar
OBJCOPY = arm-linux-objcopy
OBJDUMP = arm-linux-objdump
CFLAGS   := -Wall -O2
CPPFLAGS    := -nostdinc -nostdlib -fno-builtin
objs := start.o init.o boot.o
boot.bin: $(objs)
 ${LD} -Tboot.lds -o boot.elf $^
 ${OBJCOPY} -O binary -S boot.elf $@
 ${OBJDUMP} -D -m arm boot.elf > boot.dis
%.o:%.c
 ${CC} $(CPPFLAGS) $(CFLAGS) -c -o $@ $<
%.o:%.S
 ${CC} $(CPPFLAGS) $(CFLAGS) -c -o $@ $<
clean:
 rm -f *.o *.bin *.elf *.dis
====================================
boot.lds
SECTIONS {
. = 0x33f80000;
.text : { *(.text) }
    
. = ALIGN(4);
.rodata : {*(.rodata*)}
    
. = ALIGN(4);
.data : { *(.data) }
    
. = ALIGN(4);
__bss_start = .;
.bss : { *(.bss) *(COMMON) }
__bss_end = .;
}
. = 0x33f80000;
.text : { *(.text) }
. = ALIGN(4);
.rodata : {*(.rodata*)}
. = ALIGN(4);
.data : { *(.data) }
. = ALIGN(4);
__bss_start = .;
.bss : { *(.bss) *(COMMON) }
__bss_end = .;
}
====================================
- 嵌入式Linux應用開發完全手冊
- S3C2440手冊
- http://6xudonghai.blog.163.com/blog/static/336406292008724103317304/ (arm9的CP15 && MRC && MCR)
- http://blog.csdn.net/tommy_wxie/article/details/8847247 (Uboot分析)
- http://blog.csdn.net/tommy_wxie/article/details/8760770 (Boot Loader啟動過程分析)


 
No comments:
Post a Comment